跳转到主要内容

表格数据

在 CSV 和数据库等结构化数据上训练模型。

快速开始

aitraining tabular --train \
  --model xgboost \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --project-name tabular-model
表格训练需要 --valid-split 来指定数据中的验证集。

任务类型

分类

预测分类标签:
aitraining tabular --train \
  --model xgboost \
  --data-path ./customers.csv \
  --target-columns churn \
  --valid-split validation \
  --task classification \
  --project-name churn-predictor

回归

预测连续值:
aitraining tabular --train \
  --model xgboost \
  --data-path ./houses.csv \
  --target-columns price \
  --valid-split validation \
  --task regression \
  --project-name price-predictor

Parameters

ParameterDescriptionDefault
--modelModel typexgboost
--data-pathPath to CSV/dataNone (required)
--project-nameOutput directoryproject-name
--target-columnsTarget variable(s)["target"]
--taskclassification/regressionclassification
--train-splitTraining data splittrain
--valid-splitValidation data splitNone (required)
--id-columnID column to excludeid
--categorical-columnsCategorical featuresNone
--numerical-columnsNumerical featuresNone
--num-trialsNumber of hyperparameter trials10
--time-limitTime limit in seconds600
--seedRandom seed42

Available Models

ModelClassificationRegression
xgboostYesYes
random_forestYesYes
extra_treesYesYes
gradient_boostingYesYes
adaboostYesYes
decision_treeYesYes
logistic_regressionYesYes
ridgeYesYes
svmYesYes
knnYesYes
naive_bayesYesNo
lassoNoYes
linear_regressionNoYes

数据格式

CSV 格式

feature1,feature2,feature3,target
1.5,category_a,100,1
2.3,category_b,200,0

处理特征

指定分类列:
aitraining tabular --train \
  --model gradient_boosting \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --categorical-columns "color,size,region" \
  --project-name model
排除 ID 列:
aitraining tabular --train \
  --model xgboost \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --id-column customer_id \
  --project-name model

Examples

客户流失

aitraining tabular --train \
  --model xgboost \
  --data-path ./customers.csv \
  --target-columns churned \
  --valid-split validation \
  --id-column customer_id \
  --task classification \
  --project-name churn-model

房价预测

aitraining tabular --train \
  --model gradient_boosting \
  --data-path ./houses.csv \
  --target-columns sale_price \
  --valid-split validation \
  --id-column house_id \
  --task regression \
  --project-name house-prices

多类分类

aitraining tabular --train \
  --model extra_trees \
  --data-path ./products.csv \
  --target-columns category \
  --valid-split validation \
  --categorical-columns "brand,color,material" \
  --task classification \
  --project-name product-classifier

模型比较

在您的数据上比较不同模型:
# Train XGBoost
aitraining tabular --train \
  --model xgboost \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --project-name model-xgb

# Train Random Forest
aitraining tabular --train \
  --model random_forest \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --project-name model-rf

# Train Gradient Boosting
aitraining tabular --train \
  --model gradient_boosting \
  --data-path ./data.csv \
  --target-columns target \
  --valid-split validation \
  --project-name model-gb

Output

After training, you’ll find:
project-name/
├── model.joblib        # Trained model
├── metrics.json        # Evaluation metrics
├── feature_importance.json
└── config.yaml         # Training config

加载模型

import joblib

model = joblib.load("project-name/model.joblib")
predictions = model.predict(new_data)

下一步