# training.yaml
task: llm-sft # Task with trainer suffix
backend: local # Required: local, spaces-*, etc.
# Model settings
base_model: google/gemma-3-270m # Note: "base_model", not "model"
project_name: my-gemma-model
# Data settings (nested under "data:")
data:
path: ./data/conversations.jsonl # Note: nested under data
train_split: train
valid_split: null
chat_template: tokenizer # For LLM: tokenizer, chatml, zephyr, none
column_mapping: # Column names
text_column: text
# Logging
log: wandb
# Hub settings (optional)
hub:
username: ${HF_USERNAME}
token: ${HF_TOKEN}
push_to_hub: false
# All other training parameters go under "params:"
params:
epochs: 3
batch_size: 4
lr: 3e-5
mixed_precision: bf16
peft: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05