Saltar al contenido principal

Autenticación

Configura la autenticación para Hugging Face Hub y W&B.

Token de Hugging Face

Variable de Entorno

export HF_TOKEN="hf_xxxxxxxxxxxxxxxxxxxxx"

En Python

from autotrain.trainers.clm.params import LLMTrainingParams

params = LLMTrainingParams(
    model="google/gemma-3-270m",
    data_path="./data.jsonl",
    project_name="my-model",
    token="hf_xxxxxxxxxxxxxxxxxxxxx",  # HF token
)

Obtener un Token

  1. Ve a huggingface.co/settings/tokens
  2. Haz clic en “New token”
  3. Selecciona acceso “Write” para push al hub
  4. Copia el token

Token de W&B

Variable de Entorno

export WANDB_API_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

En Python

params = LLMTrainingParams(
    model="google/gemma-3-270m",
    data_path="./data.jsonl",
    project_name="my-model",
    log="wandb",
    wandb_token="xxxxxxxxxxxxxxxxxxxxxxxx",
)

Obtener un Token

  1. Ve a wandb.ai/authorize
  2. Copia tu clave de API

Push al Hub

Para enviar modelos al Hugging Face Hub:
params = LLMTrainingParams(
    model="google/gemma-3-270m",
    data_path="./data.jsonl",
    project_name="my-model",
    push_to_hub=True,
    username="your-hf-username",
    token="hf_xxxxxxxxxxxxxxxxxxxxx",
)

Modelos Privados

Accede a modelos privados con tu token:
# Set environment variable
import os
os.environ["HF_TOKEN"] = "hf_xxxxxxxxxxxxxxxxxxxxx"

# Or pass directly
params = LLMTrainingParams(
    model="your-org/private-model",
    data_path="./data.jsonl",
    project_name="my-model",
    token="hf_xxxxxxxxxxxxxxxxxxxxx",
)

Datasets Privados

Accede a datasets privados:
params = LLMTrainingParams(
    model="google/gemma-3-270m",
    data_path="your-org/private-dataset",  # HF dataset ID
    project_name="my-model",
    token="hf_xxxxxxxxxxxxxxxxxxxxx",
)

Manejo Seguro de Tokens

Usando Archivos .env

# .env
HF_TOKEN=hf_xxxxxxxxxxxxxxxxxxxxx
WANDB_API_KEY=xxxxxxxxxxxxxxxxxxxxxxxx
from dotenv import load_dotenv
import os

load_dotenv()

params = LLMTrainingParams(
    model="google/gemma-3-270m",
    data_path="./data.jsonl",
    project_name="my-model",
    token=os.getenv("HF_TOKEN"),
)

Nunca Hacer Commit de Tokens

Añade a .gitignore:
.env
*.token

Próximos Pasos