from autotrain.trainers.clm.params import LLMTrainingParams
from autotrain.project import AutoTrainProject
def train_model():
# Configure parameters
params = LLMTrainingParams(
# Model
model="meta-llama/Llama-3.2-1B",
project_name="llama-sft",
# Data
data_path="./conversations.jsonl",
train_split="train",
text_column="text",
block_size=2048,
# Training
trainer="sft",
epochs=3,
batch_size=2,
gradient_accumulation=4,
lr=2e-5,
mixed_precision="bf16",
# LoRA
peft=True,
lora_r=16,
lora_alpha=32,
lora_dropout=0.05,
# Logging
log="wandb",
logging_steps=10,
)
# Start training
project = AutoTrainProject(
params=params,
backend="local",
process=True
)
return project.create()
if __name__ == "__main__":
job_id = train_model()
print(f"Training complete: {job_id}")